guard digit - vertaling naar russisch
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:     

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

guard digit - vertaling naar russisch

Guard digits

guard digit         
разряд защиты
decimal digit         
  • The ten digits of the [[Arabic numerals]], in order of value.
NUMERIC SYMBOL USED IN COMBINATIONS TO REPRESENT NUMBERS IN POSITIONAL NUMERAL SYSTEMS
Decimal digit; Tenths digit; Digit (math); Units place; Unit's place; 10s place; 10's place; Tens place; Ten's place; Ones place; One's place; 1s place; 1's place; Units digit; Unit's digit; Units column; Numerical digits; Digital value; Digit value; Arabic decimal digit; Numeric digit

общая лексика

десятичная цифра

цифра (от 0 до 9), используемая в десятичной системе счисления

синоним

Arabic digits

numerical digit         
  • The ten digits of the [[Arabic numerals]], in order of value.
NUMERIC SYMBOL USED IN COMBINATIONS TO REPRESENT NUMBERS IN POSITIONAL NUMERAL SYSTEMS
Decimal digit; Tenths digit; Digit (math); Units place; Unit's place; 10s place; 10's place; Tens place; Ten's place; Ones place; One's place; 1s place; 1's place; Units digit; Unit's digit; Units column; Numerical digits; Digital value; Digit value; Arabic decimal digit; Numeric digit

общая лексика

цифра (телефонного номера)

Definitie

honor guard
An honor guard is a group of troops who formally greet or accompany someone special such as a visiting head of state. (AM; in BRIT, use guard of honour
)
N-SING

Wikipedia

Guard digit

In numerical analysis, one or more guard digits can be used to reduce the amount of roundoff error.

For example, suppose that the final result of a long, multi-step calculation can be safely rounded off to N decimal places. That is to say, the roundoff error introduced by this final roundoff makes a negligible contribution to the overall uncertainty.

However, it is quite likely that it is not safe to round off the intermediate steps in the calculation to the same number of digits. Be aware that roundoff errors can accumulate. If M decimal places are used in the intermediate calculation, we say there are M−N guard digits.

Guard digits are also used in floating point operations in most computer systems. Given 2 1 × 0.100 2 2 0 × 0.111 2 {\displaystyle 2^{1}\times 0.100_{2}-2^{0}\times 0.111_{2}} we have to line up the binary points. This means we must add an extra digit to the first operand—a guard digit. This gives us 2 1 × 0.1000 2 2 1 × 0.0111 2 {\displaystyle 2^{1}\times 0.1000_{2}-2^{1}\times 0.0111_{2}} . Performing this operation gives us 2 1 × 0.0001 2 {\displaystyle 2^{1}\times 0.0001_{2}} or 2 2 × 0.100 2 {\displaystyle 2^{-2}\times 0.100_{2}} . Without using a guard digit we have 2 1 × 0.100 2 2 1 × 0.011 2 {\displaystyle 2^{1}\times 0.100_{2}-2^{1}\times 0.011_{2}} , yielding 2 1 × 0.001 2 = {\displaystyle 2^{1}\times 0.001_{2}=} or 2 1 × 0.100 2 {\displaystyle 2^{-1}\times 0.100_{2}} . This gives us a relative error of 1. Therefore, we can see how important guard digits can be.

An example of the error caused by floating point roundoff is illustrated in the following C code.

It appears that the program should not terminate. Yet the output is :

i=54, a=1.000000

Another example is:

Take 2 numbers:

2.56 × 10 0 {\displaystyle 2.56\times 10^{0}} and 2.34 × 10 2 {\displaystyle 2.34\times 10^{2}}

we bring the first number to the same power of 10 {\displaystyle 10} as the second one:

0.0256 × 10 2 {\displaystyle 0.0256\times 10^{2}}

The addition of the 2 numbers is:

0.0256*10^2 
2.3400*10^2 +  
____________ 
2.3656*10^2 

After padding the second number (i.e., 2.34 × 10 2 {\displaystyle 2.34\times 10^{2}} ) with two 0 {\displaystyle 0} s, the bit after 4 {\displaystyle 4} is the guard digit, and the bit after is the round digit. The result after rounding is 2.37 {\displaystyle 2.37} as opposed to 2.36 {\displaystyle 2.36} , without the extra bits (guard and round bits), i.e., by considering only 0.02 + 2.34 = 2.36 {\displaystyle 0.02+2.34=2.36} . The error therefore is 0.01 {\displaystyle 0.01} .

Vertaling van &#39guard digit&#39 naar Russisch